
CS 61A Discussion 3
Sequences and Data
Abstraction

Announcements

- Guerrilla section this Saturday from 12-3pm in 247
Cory (environment diagrams, HOF, recursion)

- Midterm 2/17 from 7-9pm; fill out alternate form by
Sunday

- Homework 3 has been released, due 2/14 (party
6:30-8:30pm in 247 Cory)

You know what it is
(a quiz)

Sequences
Sequences are ordered collections of items.
Every sequence must have a length and allow for
element selection (indexing).

Examples of Sequences

Lists

are sequences.

>>> len([1, 2])
2
>>> [1, 2][1]
2

Tuples

are sequences.

>>> len((1, 2))
2
>>> (1, 2)[1]
2

Strings

are sequences.

>>> len(‘12’)
2
>>> ‘12’[1]
‘2’

Sets

are not sequences.

>>> len({1, 2})
2
>>> {1, 2}[1]
Error

Dictionaries

are not sequences.

>>> len({1: 2, 2: 1})
2
>>> {1: 2, 2: 1}[0]
Error

[] () ‘’

{} {}

Creation

[7, 8] OR list((7, 8))

DO NOT call list on a
non-iterable! list(7, 8)
WILL error.

List Manipulation

Population

You can put anything you
want into a list.

[1, [1], ‘one’, None,
True, (1,), 1.0, {1: 1}]

Concatenation

Glue multiple lists together with the + operator.

>>> [1, 2, 3] + [‘four’, {5}, (6,)]
[1, 2, 3, ‘four’, {5}, (6,)]

Existence Checking

Use the in operator.

>>> your_grades = [‘a+’, ‘a-’, ‘a’, ‘a+’]
>>> ‘f’ in your_grades
False
>>> ‘a+’ in your_grades
True

More List Manipulation

Length Practice

>>> len(([4, 5], 6, ‘7’))

>>> len(([1, 2, 3]))

>>> len(‘abc’)

Length Practice (Solutions)

>>> len(([4, 5], 6, ‘7’))
3
>>> len(([1, 2, 3]))
3
>>> len(‘abc’)
3

Indexing Practice

>>> naturals = list(range(5))
>>> naturals[1] = list(range(5))
>>> naturals
[0, [0, 1, 2, 3, 4], 2, 3, 4]
>>> naturals[-5] + naturals[4]

>>> naturals[1][1]

>>> naturals[-3][3]

>>> naturals[naturals[-4][-4]][-4]

Indexing Practice (Solutions)

>>> naturals = list(range(5))
>>> naturals[1] = list(range(5))
>>> naturals
[0, [0, 1, 2, 3, 4], 2, 3, 4]
>>> naturals[-5] + naturals[4]
4
>>> naturals[1][1]
1
>>> naturals[-3][3]
Error
>>> naturals[naturals[-4][-4]][-4]
1

Get a new list whose elements are some subset of the original
list. Slicing involves three arguments, all of which are optional:

lst[start index : end index ± 1 : step size]

- If step size is omitted, it defaults to 1.

- If start index is omitted, it defaults to 0 if step size > 0,
and len(lst) - 1 if step size < 0.

- If end index is omitted, it defaults to len(lst) - 1 if
step size > 0, and 0 if step size < 0.

- It’ll be end index + 1 if step size > 0, and end index - 1
if step size < 0.

List Slicing

Slicing Practice

>>> naturals = [list(range(4)), 4, 5]
>>> orig = naturals[:]
>>> naturals[0][2], naturals[-2] = 50, 6
>>> naturals
[[0, 1, 50, 3], 6, 5]
>>> orig

>>> naturals[1::-1]

>>> naturals[:2]

>>> naturals[:-3:-1]

>>> naturals[:2:3]

>>> naturals[0][::-1][1:5:2]

Slicing Practice (Solutions)

>>> naturals = [list(range(4)), 4, 5]
>>> orig = naturals[:]
>>> naturals[0][2], naturals[-2] = 50, 6
>>> naturals
[[0, 1, 50, 3], 6, 5]
>>> orig
[[0, 1, 50, 3], 4, 5]
>>> naturals[1::-1]
[6, [0, 1, 50, 3]]
>>> naturals[:2]
[[0, 1, 50, 3], 6]
>>> naturals[:-3:-1]
[5, 6]
>>> naturals[:2:3]
[[0, 1, 50, 3]]
>>> naturals[0][::-1][1:5:2]
[50, 0]

- map(fn, lst)
- Returns an iterator over the elements of lst, where fn has

been applied to all of them.
- list(map(lambda x: x * 2, [1, 2, 3])) → [2, 4, 6]

- filter(pred, lst)
- Returns an iterator over the elements of lst for which

pred(<elt>) is a true value.
- list(filter(lambda x: x % 2, [1, 2, 3])) → [1, 3]

- reduce(accum, lst, zero_value)
- Repeatedly combines elements of lst into one value (using the

accum function), starting with the base value zero_value.
- In Python 3, you’ll need to import reduce from functools.
- reduce(lambda x, y: x + y, [1, 2, 3]) → 6

List Processing Functions

A more concise way to create a new list.

lst = [<expr> for x in <iterable> if <cond expr>]

- is equivalent to -

lst = []
for x in <iterable>:

if <cond expr>:
lst += [<expr>]

(I write x in the code above, but any name will do!)

List Comprehensions

Abstract Data
Types

“
“I don’t care how it’s implemented. I
just want to know what properties

and/or behavior the data has” -
Abraham Lincoln

Only the constructors and the selectors
should know how the data is really
represented!

Everything else should just reference the
constructors / selectors themselves.

(Then, if you change the constructor / selector implementation,
nothing else should break.)

That’s it for today!
See you around. :)

